

Fatigue modelling and fast testing methodologies to optimise part design and to boost lightweight materials deployment in chassis parts

ECODESIGN ON FATIGUE4LIGHT

LCA Strategy

PRESENTER: VIOLETA VARGAS EMAIL: violeta.vargas@eurecat.org DATE: Feb 9th, 2023

INDEX

- Eco-design methodology
- 3
- Scope, Functional Unit and System boundaries

LCI Data Collection

Conclusions

Fatigue4Light

Fatigue modelling and fast testing methodologies to optimize part design and to boost lightweight materials deployment in chassis parts

Objectives

- 24-30% weight reduction
- 12-15% weight savings from structural vehicle weight, and also increase EV safety due to reduced sprung mass.
- Materials solutions with high fatigue performance (AHSS, stainless steel, Al alloys and hybrid metal-FRP materials),
- Development of new computer modelling with high fatigue prediction accuracy
- New experimental methodologies that reduce the testing time for new materials.
- Enhanced affordability and sustainability based on eco-design approach supported by LCA and LCC

Design for Circularity

Life Cycle Assessment Life Cycle Costing

UNIVERSIT

eureca

Demonstrators

8-77-8 |||| 8-0-8

Ecodesign methodology applied to EV lightweighting

Four main steps (left: Deming Cycle PDSA; right: F4L Eco-design Cycle)

STEP 1: Identification of Hotspots and Life Cycle Stages

STEP 2: Establishment of the most properly ecodesign strategies based on STEP 1

STEP 3: Re-adaption of technological procedures to the selected strategies

STEP 4: Definition of concrete eco-design actions

ECODESIGN: A methodological framework development - Step 1

STEP 1: Identification of Hotspots and Life Cycle FATIG

- Based on a benchmark analysis for conventional products/stages/materials...
- With the application of the LCA/LCC in a simplified manner at the beginning of the project/action/task

Hotspots have been identified and correlated with life cycle stages

been compiled

STEP 1: Identification of Hotspots and Life Cycle Stages

STEP 2: Establishment of the most properly ecodesign strategies based on STEP 1

STEP 3: Re-adaption of technological procedures to the selected strategies

STEP 4: Definition of concrete eco-design actions

- To procure adapt the technical perspective to the environmental sphere (and vice versa)
- Direct contact with technical experts

8

•

STEP 1: Identification of Hotspots and Life Cycle Stages

STEP 2: Establishment of the most properly ecodesign strategies based on STEP 1

STEP 3: Re-adaption of technological procedures to the selected strategies

STEP 4: Definition of concrete eco-design actions

Define the matrix based on both technical and sustainability expertise and rank actions (AHP) at webinar

• From the strategy to action, in other

"translate it" into environmental sphere

Evaluation through a score matrix

words: define clearly what technical

specific activities are proposed and

ECODESIGN: A methodological framework development - Results

Strategy	Strategy score	Actions	Action score	Final score
A bonoficial material coloction	0 155	Use of recycled and recyclable materials for the different demonstrators 5		0,003
A beneficial material selection	0,155	Reduction of Critical Raw Materials from alloys	0,019	0,003
Considering the origin of the materials	0,055	Adopt a lifecycle perspective to obtain longer term choices and improve the entire EV environmental impact	0,096	0,005
		Use of lightweight materials to reduce whole EV weight, e.g. HSS steel to 2		0,008
Design for lightweight	0,177	Introduce optimal design for lightweight, e.g. consider the type of vehicle and use pattern to design optimized parts of the EV	0,049	0,009
Numerical strategies	0,119	Use numerical modelling to optimize part design. E.g. topology optimizatio 7	0,014	0,002
Design for maintainability	0,110	Introduce optimal design for life extension, e.g. material coating for prolonged life and improved maintainability, Increase of fatigue properties of welded assemblies	0,060	0,007
Design for End-of-Life (reuse and recycling)	0,110	Adopt a "design for recycling" approach by using easy recoverable and recyclable materials e.g. one family of aluminium alloy	0,022	0,002
Value Return	0,122	Adopt a "design for disassembly" approach by including the use joining elements that can easily be removed	0,029	0,001
Unity	0,152			

Scope

images: Flaticon.com'. These covers has been designed using resources from Flaticon.com

FATIGUE 4LIGHT

LCI Data Collection

Raw material extraction, manufacturing and assembly

Inventory for 1 part processed

Weight per unit

Short process step description (images encouraged)

Process time (minutes)

Inputs	Quantity	Unit	Cost	Cost unit	Supplier	city/country	Transport 1	Transport 2	Comment
Raw material 1		kg							
Raw material 2									
Raw material 3									
Raw material 4 (consumables)									
Natural gas		m3							
Fuel									
							•	•	

Water	m3	
Electricity	kWh	

Inputs	Quantity	Unit	Cost	Cost
Labour time		min		

Inputs	Energy consumpti	Unit	Technic al Life	Investme nt cost	Annual maintenance cost	Cost unit
Equipment/Machine 1		kWh				
Equipment/Machine 2		kWh				
Equipment/Machine 3		kWh				

Outputs	Quantity	Unit	¥aste management				Comment
Waste (connect to material in		kg/%					
Wastewater		m3					
Other							

LCI Data Collection

Electric vehicles from life cycle and circular economy perspectives

EEA Report No 13/2018

ISSN 1977-8449

TERM 2018: Transport and Environment Reporting Mechanism (TERM) report

Use stage

Based on literature

- Use stage model energy consumption 15-21 kWh/100 km
- Lifetime driving distance
 - 250,000 km
 - 180,000 km (EV)

EoL stage

Based on literature

- Recycling %
- ۲ Landfill %
- Energy recovery %

European Environment Agency

Life cycle assessment of auto parts -Guidelines for conducting LCA of auto parts incorporating weight changes due to material composition, manufacturing technology, or part geometry

CSA Group

Ð

Fatigue modelling and fast testing methodologies to optimise part design and to boost lightweight materials deployment in chassis parts

ECODESIGN ON FATIGUE4LIGHT

LCA Strategy

PRESENTER: VIOLETA VARGAS EMAIL: violeta.vargas@eurecat.org DATE: Feb 9th, 2023